J. ERNEST CARMAN DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR # GEOLOGIC ATLAS # UNITED STATES ## MITCHELL FOLIO SOUTH DAKOTA INDEX MAP CONTENTS DESCRIPTIVE TEXT TOPOGRAPHIC MAP AREAL GEOLOGY MAP ARTESIAN WATER MAP LIBRARY EDITION WASHINGTON, D. C. ENGRAVED AND PRINTED BY THE U.S. GEOLOGICAL SURVEY MITCHELL FOLIO ### EXPLANATION. The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The ing to the surface of the ground, they wind two are being issued together in the form of an smoothly about smooth surfaces, recede into all atlas, the parts of which are called folios. Each reentrant angles of ravines, and project in passing folio consists of a topographic base map and geologic maps of a small area of country, together with explanatory and descriptive texts. #### THE TOPOGRAPHIC MAP. The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called *relief*, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainage, as streams, lakes, and swamps (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities. Relief.—All elevations are measured from mean sea level. The heights of many points are accurately determined, and those which are most important are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the horizontal outline, or contour, of all slopes, and to indicate their grade or degree of steepness. This is done by lines connecting points of equal elevation above mean sea level, the lines being drawn at regular vertical intervals. These lines are called contours, and the uniform vertical space between each two contours is called the contour interval. Contours and elevations are printed in The manner in which contours express elevation, form, and grade is shown in the following sketch and corresponding contour map: Fig. 1.—Ideal sketch and corresponding contour map. The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On each side of the valley is a terrace. From the terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply. in a precipice. Contrasted with this precipice is the gentle descent of the slope at the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade: 1. A contour indicates approximately a certain height above sea level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at 50, 100, 150, 200 feet, and so on, above sea level. Along the contour at 250 feet lie all points of the surface 250 feet above sea; and similarly with any other contour. In the space between any two contours are found all elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours—say every fifth one—are accentuated and numbered; the heights of others may then be ascertained by counting up or down from a numbered contour. contours are continuous horizontal lines conformabout prominences. The relations of contour curves and angles to forms of the landscape can be traced in the map and sketch. 3. Contours show the approximate grade of any slope. The vertical space between two contours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes and near together on steep ones. For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is used for regions like the Mississippi delta and the Dismal Swamp. In mapping great mountain masses, like those in Colorado, the interval may be 250 feet. For intermediate relief contour intervals of 10, 20, 25, 50, and 100 feet are used. Drainage.—Water courses are indicated by blue lines. If the streams flow the year round the line is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted. Where a stream sinks and reappears at the surface, the supposed underground course is shown by a broken blue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate conventional signs. Culture.—The works of man, such as roads, railroads, and towns, together with boundaries of townships, counties, and States, and artificial details, are printed in black. Scales.—The area of the United States (excluding Alaska) is about 3,025,000 square miles. On a map with the scale of 1 mile to the inch this would cover 3,025,000 square inches, and to accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance by a fraction, of which the numerator is a length on the map and the denominator the corresponding length in nature expressed in the same unit. Thus, as there are 63,360 inches in a mile, the scale of "1 mile to an inch" is expressed by $\frac{1}{63.800}$. Both of these methods are used on the maps of the Geological Survey. Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250,000}$, the intermediate $\frac{1}{125,000}$, and the largest $\frac{1}{62,500}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{69.500}$ a square inch of map surface represents and corresponds nearly to 1 square mile; on the scale $\frac{1}{125,500}$, to about 4 square miles; and on the scale $\frac{1}{250,000}$, to about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three different ways, one being a graduated line representing miles and parts of miles in English inches, another indicating distance in the metric system, and a third giving the being published in atlas sheets of convenient size, which are bounded by parallels and meridians. The corresponding four cornered portions of territory are called quadrangles. Each sheet on the scale of $\frac{1}{250,000}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{125,000}$ contains one-quarter of a square degree; each sheet on a scale of $\frac{1}{62.500}$ contains one-sixteenth of a square degree. The areas of the corresponding quadrangles are about 4000, 1000, and 250 square miles, respectively. The atlas sheets, being only parts of one map of the United States, are laid out without regard to the boundary lines of the States, counties, or townships. To each sheet, and to the quadrangle it adjacent sheets, if published, are printed. Uses of the topographic sheet.—Within the limits of scale the topographic sheet is an accurate and characteristic delineation of the relief, drainage, and culture of the district represented. Viewing the landscape, map in hand, every characteristic feature of sufficient magnitude should be recognizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminary surveys in locating roads, railways, and irrigation ditches; provide educational material for schools and homes; and serve many of the purposes of a map for local reference. #### THE GEOLOGIC MAP. The maps representing areal geology show by colors and conventional signs, on the topographic base map, the distribution of rock formations on the surface of the earth, and the structure-section map shows their underground relations, as far as known and in such detail as the scale permits. #### KINDS OF ROCKS. Rocks are of many kinds. The original crust of the earth was probably composed of igneous rocks, and all other rocks have been derived from them in one way or another. Atmospheric agencies gradually break up igneous rocks, forming superficial, or surficial, deposits of clay, sand, and gravel. Deposits of this class have been formed on land surfaces since the earliest geologic time. Through the transporting agencies of streams the surficial materials of all ages and origins are carried to the sea, where, along with material derived from the land by the action of the waves on the coast, they form sedimentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone, but they may remain unconsolidated and still be called "rocks" by the geologist, though popularly | than this have repeatedly occurred in the past. known as gravel, sand, and clay. From time to time in geologic history igneous and sedimentary rocks have been deeply buried, consolidated, and raised again above the surface | phism of a sedimentary rock, just as in the metain nature and corresponding distance on the map is of the water. In these processes, through the morphism of an igneous rock, the substances of called the scale of the map. In this case it is "1 agencies of pressure, movement, and chemical which it is composed may enter into new comnile to an inch." The scale may be expressed also action, they are often greatly altered, and in this binations, or new substances may be added condition they are called metamorphic rocks. Igneous rocks.—These are rocks which have cooled and consolidated from a liquid state. As has been explained, sedimentary rocks were deposited on the original igneous rocks. Through the igneous and sedimentary rocks of all ages molten material has from time to time been forced upward to or near the surface, and there consolidated. When the channels or vents into which this molten material is forced do not reach the surface, it may consolidate in cracks or fissures crossing the beading planes, thus forming dikes, called sheets or laccoliths, or form large irregular cross-cutting masses, called stocks. Such rocks are called intrusive. Within their rock inclosures they cool slowly, and hence are generally of crystalline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air, talline condition. They are usually more or less Atlas sheets and quadrangles.—The map is porous. The igneous rocks thus formed upon the often accompanies volcanic eruptions, causing ejections of dust or ash and larger fragments. breccias, agglomerates, and tuffs. The ash when as to have the structure of sedimentary rocks. The age of an igneous rock is often difficult or impossible to determine. When it cuts across a sedimentary rock it is younger than that rock, and when a sedimentary rock is deposited over it the igneous rock is the older. forces an igneous rock may be metamorphosed. The Control of Co 2. Contours define the forms of slopes. Since the sides and corners of each sheet the names of tion. Further, the structure of the rock may be changed by the development of planes of division, so that it splits in one direction more easily than in others. Thus a granite may pass into a gneiss, and from that into a mica-schist. > Sedimentary rocks.—These comprise all rocks which have been deposited under water, whether in sea, lake, or stream. They form a very large part of the dry land. When the materials of which sedimentary rocks are composed are carried as solid particles by water and deposited as gravel, sand, or mud, the deposit is called a mechanical sediment. These may become hardened into conglomerate, sandstone, or shale. When the material is carried in solution by the water and is deposited without the aid of life, it is called a chemical sediment; if deposited with the aid of life, it is called an organic sediment. The more important rocks formed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the above sedimentary deposits may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in successive layers are said to be stratified. The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks over wide expanses, and as it rises or subsides the shore lines of the ocean are changed: areas of deposition may rise above the water and become land areas, and land areas may sink below the water and become areas of deposition. If North America were gradually to sink a thousand feet the sea would flow over the Atlantic coast and the Mississippi and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would become an archipelago, and the ocean's shore would traverse Wisconsin, Iowa, and Kansas, and extend thence to Texas. More extensive changes The character of the original sediments may be changed by chemical and dynamic action so as to produce metamorphic rocks. In the metamor-When these processes are complete the sedimentary rock becomes crystalline. Such changes transform sandstone to quartzite, limestone to marble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the original beds or strata at any angle. Rocks divided by such planes are called slates or schists. Rocks of any period of the earth's history may be more or less altered, but the younger formations have generally escaped marked metamorphism, and the oldest sediments known, though or spread out between the strata in large bodies, generally the most altered, in some localities remain essentially unchanged. Surficial rocks.—These embrace the soils, clays. sands, gravels, and bowlders that cover the surface, whether derived from the breaking up or disintegration of the underlying rocks by atmospheric agencies or from glacial action. Surficial rocks that are due to disintegration are produced chiefly acquiring a glassy or, more often, a partially crys by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble. parts of the rocks, which remain after the more surface are called extrusive. Explosive action soluble parts have been leached out, and hence are known as residual products. Soils and subsoils are the most important. Residual accumu-These materials when consolidated constitute lations are often washed or blown into valleys or other depressions, where they lodge and form carried into lakes or seas may become stratified, so | deposits that grade into the sedimentary class. Surficial rocks that are due to glacial action are formed of the products of disintegration, together with bowlders and fragments of rock rubbed from the surface and ground together. These are spread irregularly over the territory occupied by the ice, and form a mixture of clay, pebbles, Under the influence of dynamic and chemical and bowlders which is known as till. It may occur as a sheet or be bunched into hills and The alteration may involve only a rearrangement ridges, forming moraines, drumlins, and other represents, is given the name of some well-known of its minute particles or it may be accompanied special forms. Much of this mixed material was town or natural feature within its limits, and at by a change in chemical and mineralogic composi- washed away from the ice, assorted by water, and land is called modified drift. It is usual also to class as surficial rocks the deposits of the sea and of lakes and rivers that were made at the same time as the ice deposit. #### AGES OF ROCKS Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's history. Classification by age is independent of origin; igneous, sedimentary, and surficial rocks may be of the same age. When the predominant material of a rock mass is essentially the same, and it is bounded by rocks a formation is the unit of geologic mapping. designated a system. The time taken for the the time taken for that of a system, or some of the period being omitted. larger fraction of a system, a period. The rocks classified into systems. The rocks composing a system and the time taken for its deposition are given the same name, as, for instance, Cambrian circles, printed in any colors, are used. system, Cambrian period. As sedimentary deposits or strata accumulate the younger rest on those that are older, and the relative ages of the deposits may be discovered by observing their relative positions. This reladisturbance; sometimes in such regions the disdetermine the relative ages of the beds from their or more formations is the oldest. surficial deposits on the land. Rocks that con- pattern. tain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been. found that the species of each period of the earth's complex kinds developed, and as the simpler ones | suggest the name of the rocks. lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of the margin is a legend, which is the key to the rock in which they are found. Other types map. To ascertain the meaning of any particular stituting the slopes, as shown at the extreme left occur in the quadrangle. It presents a summary passed on from period to period, and thus linked colored pattern and its letter-symbol on the map of the section. the systems together, forming a chain of life from | the reader should look for that color, pattern, and the time of the oldest fossiliferous rocks to the other and it is impossible to observe their relative | sought in the legend and its color and pattern | positions, the characteristic fossil types found in them may determine which was deposited first. Fossil remains found in the rocks of different areas, provinces, and continents afford the most important means for combining local histories are arranged, in columnar form, according to the into a general earth history. of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colors and symbol assigned to each, are given in the table in the next column. The names of certain subdivisions and groups of the periods, frequently est, showing their relations to the features of topoused in geologic writings, are bracketed against graphy and to the geologic formations. All the the appropriate period names. any one period from those of another the patterns | terns. The areal geology, thus printed, affords a for the formations of each period are printed in subdued background upon which the areas of pro- are now bent and folded is regarded as proof that cated graphically and by the word "unconformity." the appropriate period-color, with the exception | ductive formations may be emphasized by strong | forces exist which have from time to time caused of the one at the top of the column (Pleistocene) colors. A symbol for mines is introduced at each the earth's surface to wrinkle along certain zones. and the one at the bottom (Archean). The sedi- occurrence, accompanied by the name of the In places the strata are broken across and the Revised January, 1902. redeposited as beds or trains of sand and clay, mentary formations of any one period, excepting principal mineral mined or of the stone quarried. parts slipped past one another. Such breaks are thus forming another gradation into sedimentary | the Pleistocene and the Archean, are distinguished deposits. Some of this glacial wash was deposited from one another by different patterns, made of in tunnels and channels in the ice, and forms char-parallel straight lines. Two tints of the periodacteristic ridges and mounds of sand and gravel, color are used: a pale tint is printed evenly over known as osars, or eskers, and kames. The the whole surface representing the period; a dark material deposited by the ice is called glacial tint brings out the different patterns representing drift; that washed from the ice onto the adjacent formations. Each formation is furthermore given | Period. | | SYMBOL. | Color. | |------------|-----------------------------------|---------|---------------| | | Pleistocene | Р. | Any colors. | | Cenozoic - | Neocene { Pliocene } | · N | Buffs. | | | Eocene, including Oligocene | E | Olive-browns. | | Mesozoic | (Cretaceous | . K | Olive-greens. | | | Juratrias Jurassic | J | Blue-greens. | | | Carboniferous, including Permian | С | Blues. | | Paleozoic | Devonian | D | Blue-purples. | | | Silurian, including
Ordovician | S | Red-purples. | | | Cambrian | € | Pinks. | | , , | Algonkian | Α | Orange-browns | | | Archean | Æ | Any colors. | of different materials, it is convenient to call the a letter-symbol composed of the period letter com- deep. This is illustrated in the following figure: mass throughout its extent a formation, and such | bined with small letters standing for the formation name. In the case of a sedimentary formation Several formations considered together are of uncertain age the pattern is printed on white ground in the color of the period to which the deposition of a formation is called an *epoch*, and formation is supposed to belong, the letter-symbol The number and extent of surficial formations, are mapped by formations, and the formations are chiefly Pleistocene, render them so important that, to distinguish them from those of other periods and from the igneous rocks, patterns of dots and The origin of the Archean rocks is not fully settled. Many of them are certainly igneous. Whether sedimentary rocks are also included is not determined The Archean rocks, and all metamorphic rocks of unknown origin, of whattionship holds except in regions of intense ever age, are represented on the maps by patterns consisting of short dashes irrregularly placed. turbance of the beds has been so great that their | These are printed in any color, and may be darker | These symbols admit of much variation, but the position is reversed, and it is often difficult to or lighter than the background. If the rock is a following are generally used in sections to represchist the dashes or hachures may be arranged in sent the commoner kinds of rock: positions; then fossils, or the remains of plants wavy parallel lines. If the metamorphic rock is and animals, are guides to show which of two known to be of sedimentary origin the hachure patterns may be combined with the parallel-line Strata often contain the remains of plants and patterns of sedimentary formations. If the rock animals which lived in the sea or were washed is recognized as having been originally igneous, from the land into lakes or seas or were buried in the hachures may be combined with the igneous Known igneous formations are represented by patterns of triangles or rhombs printed in any brilliant color. If the formation is of known age history have to a great extent differed from those the letter-symbol of the formation is preceded by of other periods. Only the simpler kinds of the capital letter-symbol of the proper period. marine life existed when the oldest fossiliferous If the age of the formation is unknown the rocks were deposited. From time to time more letter-symbol consists of small letters which #### THE VARIOUS GEOLOGIC SHEETS. Areal geology sheet.—This sheet shows the areas occupied by the various formations. On symbol in the legend, where he will find the name and description of the formation. If it is desired When two formations are remote one from the to find any given formation, its name should be noted, when the areas on the map corresponding the outcrops of limestone and calcareous shales. in color and pattern may be traced out. geologic history. In it the symbols and names Colors and patterns.—To show the relative ages and igneous—and within each group they are of a bed with a horizontal plane will take is called placed in the order of age, so far as known, the the strike. The inclination of the bed to the horiyoungest at the top. Economic geology sheet.—This sheet represents is called the dip. the distribution of useful minerals, the occurrence of artesian water, or other facts of economic inter-To distinguish the sedimentary formations of sheet are shown on this sheet by fainter color pat- Structure-section sheet.—This sheet exhibits the relations of the formations beneath the surface. artificial cuttings, the relations of different beds the relations. The arrangement of rocks in the known by observation or well-founded inference. earth is the earth's structure, and a section exhibiting this arrangement is called a structure section. natural and artificial cuttings for his information set of sandstones and shales, which lie in a horiconcerning the earth's structure. Knowing the zontal position. These sedimentary strata are traced out the relations among beds on the sur- their change of elevation shows that a portion face, he can infer their relative positions after of the earth's mass has swelled upward from a they pass beneath the surface, draw sections lower to a higher level. The strata of this set are which represent the structure of the earth to a parallel, a relation which is called *conformable*. considerable depth, and construct a diagram exhibiting what would be seen in the side of a which form arches and troughs. These strata cutting many miles long and several thousand feet Fig. 2.—Sketch showing a vertical section in the front of the picture, with a landscape beyond. The figure represents a landscape which is cut off sharply in the foreground by a vertical plane, so as to show the underground relations of the line schists and igneous rocks. At some period The kinds of rock are indicated in the section by appropriate symbols of lines, dots, and dashes. Massive and bedded igneous rocks. Fig. 3.—Symbols used to represent different kinds of rock. The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, con- several ridges, which are seen in the section to of accumulation of successive deposits. correspond to beds of sandstone that rise to the surface. The upturned edges of these beds form the ridges, and the intermediate valleys follow Where the edges of the strata appear at the The legend is also a partial statement of the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can When strata which are thus inclined are traced underground in mining, or by inference, it is frequently observed that they form troughs or arches, such as the section shows. The arches are called formations which appear on the historical geology | anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited events of uplift and degradation and constitute beneath the sea in nearly flat sheets. That they interruptions of deposition of sediments are indi- termed faults. On the right of the sketch the section is com-In cliffs, canyons, shafts, and other natural and posed of schists which are traversed by masses of igneous rock. The schists are much contorted to one another may be seen. Any cutting which and their arrangement underground can not be exhibits those relations is called a section, and the inferred. Hence that portion of the section same name is applied to a diagram representing delineates what is probably true but is not In fig. 2 there are three sets of formations, distinguished by their underground relations. The The geologist is not limited, however, to the first of these, seen at the left of the section, is the manner of the formation of rocks, and having now high above the sea, forming a plateau, and The second set of formations consists of strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable. The horizonal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying deposits are, from their positions, evidently younger than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds and the accumulation of the younger. When younger strata thus rest upon an eroded surface of older strata the relation between the two is an unconformable one, and their surface of contact is an unconformity. The third set of formations consists of crystalof their history the schists were plicated by pressure and traversed by eruptions of molten rock. But this pressure and intrusion of igneous rocks have not affected the overlying strata of the second set. Thus it is evident that an interval of considerable duration elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets, marking a time interval between two periods of rock formation, is another nconformity. The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections in the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profiles of the surface in the section correspond to the actual slopes of the ground along the section line, and the depth from the surface of any mineral-producing or waterbearing stratum which appears in the section may be measured by using the scale of the map. Columnar section sheet.—This sheet contains a concise description of the rock formations which of the facts relating to the character of the rocks, The broad belt of lower land is traversed by the thicknesses of the formations, and the order The rocks are described under the corresponding heading, and their characters are indicated in the columnar diagrams by appropriate symbols. The thicknesses of formations are given in figures which state the least and greatest measurements. The average thickness of each formation is shown in the column, which is drawn to a scale — usually 1000 feet to 1 inch. The order of accumulation of origin of the formations—surficial, sedimentary, be inferred. The direction that the intersection the sediments is shown in the columnar arrangement: the oldest formation is placed at the bottom of the column, the youngest at the top, and ignezontal plane, measured at right angles to the strike, ous rocks or surficial deposits, when present, are indicated in their proper relations. The formations are combined into systems which correspond with the periods of geologic history. Thus the ages of the rocks are shown, and also the total thickness of each system. The intervals of time which correspond to CHARLES D. WALCOTT, Director. ### PUBLISHED GEOLOGIC FOLIOS | No.* | Name of folio. | State. | Price. | |----------|---------------------------|--------------------------|--------| | | | | Gents | | 1 | Livingston | Montana | 25 | | 2 | Ringgold | Georgia-Tennessee | 25 | | 3 | Placerville | California | 25 | | ‡4 | Kingston | Tennessee | 25 | | 5 | Sacramento | California | 25 | | ‡6 | Chattanooga | Tennessee | 25 | | 17 | Pikes Peak | Colorado | 25 | | 8 | Sewanee | Tennessee | 25 | | ‡ 9 | Anthracite-Crested Butte | Golorado | 50 | | 10 | Harpers Ferry | VaW. VaMd | 25 | | 1.1 | Jackson | Galifornia | 25 | | 12 | Estillville | VaKyTenn. | 25 | | 13 | Fredericksburg | Maryland-Virginia | 25 | | 14 | Staunton | Virginia-West Virginia | 25 | | 15 | Lassen Peak | California | 25 | | 16 | Knoxville | Tennessee-North Carolina | 25 | | 17 | Marysville | California | 25 | | 18 | Smartsville | Galifornia | 25 | | 19 | Stevenson | AlaGaTenn. | 25 | | 20 | Gleveland | Tennessee | 25 | | 21 | Pikeville | Tennessee | 25 | | 22 | McMinnville | Tennessee | 25 | | 23 | Nomini | | 25 | | 25
24 | Three Forks | Maryland-Virginia | 50 | | 25 | Loudon | Montana | 25 | | 26 | Pocahontas | Tennessee | | | | Morristown | Virginia-West Virginia | | | 27 | | Tennessee | 25 | | 28 | Piedmont | Maryland-West Virginia | 25 | | 29 | Nevada City Special | Galifornia | 50 | | 30 | Yellowstone National Park | Wyoming | 75 | | 31 | Pyramid Peak | California | 25 | | 32 | Franklin | Virginia-West Virginia | 25 | | 33 | Briceville | Tennessee | 25 | | 34 | Buckhannon | West Virginia | 25 | | 35 | Gadsden | Alabama | | | 36 | Pueblo | Golorado | 50 | | 37 | Downieville | Galifornia | 25 | | 38 | Butte Special | Montana | 50 | | 39 | Truckee | Galifornia | | | 40 | Wartburg | Tennessee | 25 | | 41 | Sonora | Galifornia | 25 | | 42 | Nueces | Texas | 25 | | 43 | Bidwell Bar | California | 25 | | 44 | Tazewell | Virginia-West Virginia | 25 | | 45 | Boise | Idaho | 25 | | 46 | Richmond | Kentucky | 25 | | 47 | London | Kentucky | 25 | | 48 | Tenmile District Special | Golorado | 25 | | 49 | Roseburg | Oregon | 25 | | 50 | Holyoke | MassGonn | 50 | | | | | | | No.* | Name of folio. | State. | Price.† | |------|---------------------------|--------------------------|---------| | | | | Gents. | | 51 | Big Trees | California | 25 | | 52 | Absaroka | Wyoming | 25 | | 53 | Standingstone | Tennessee | 25 | | 54 | Tacoma | Washington | 25 | | 55 | Fort Benton | Montana | 25 | | 56 | Little Belt Mountains | Montana | 25 | | 57 | Telluride | Colorado | 25 | | 58 | Elmoro | Golorado | 25 | | 59 | Bristol | Virginia-Tennessee | 25 | | 60 . | La Plata | Colorado | 25 | | 61 | Monterey | Virginia-West Virginia | 25 | | 62 | Menominee Special | Michigan | 25 | | 63 | Mother Lode District | Galifornia | | | 64 | Uvalde | | 50 | | | | Texas | 25 | | 65 | Tintic Special | Utah | 25 | | 66 | Colfax | Galifornia | 25 | | 67 | Danville | Illinois-Indiana | 25 | | 68 | Walsenburg | Golorado | 25 | | 69 | Huntington | West Virginia-Ohio | 25 | | 70 | Washington | D. GVaMd. | 50 | | 71 | Spanish Peaks | Golorado | 25 | | 72 | Charleston | West Virginia | 25 | | 73 | Goos Bay | Oregon | 25 | | 74 | Goalgate | Indian Territory | 25 | | 75 | Maynardville | Tennessee | 25 | | 76 | Austin | Texas | 25 | | 77 | Raleigh | West Virginia | 25 | | 78 | Rome | Georgia-Alabama | . 25 | | 79. | Atoka | Indian Territory | 25 | | 80 | Norfolk | Virginia-North Carolina | 25 | | 81 | Chicago | Illinois-Indiana | 50 | | 82 | Masontown-Uniontown | Pennsylvania | 25 | | 83 | New York City | New York-New Jersey | 50 | | 84 | Ditney | Indiana | 25 | | 85 | Oelrichs | South Dakota-Nebraska | 25 | | 86 | Ellensburg | Washington | 25 | | 87 | Gamp Clarke | Nebraska | 25 | | 88 | Scotts Bluff | Nebraska | 25 | | 89 | Port Orford | Oregon | 25 | | 90 | Granberry | North Carolina-Tennessee | 25 | | 91 | Hartville | Wyoming | 25 | | 92 | Gaines | Pennsylvania-New York | 25 | | 93 | Elkland-Tioga | Pennsylvania | 25 | | 94 | Brownsville-Connellsville | Pennsylvania | 25 | | 95 | Columbia | Tennessee | 25 | | 96 | Olivet | South Dakota | 25 | | 97 | Parker | South Dakota | 25 | | 98 | Tishomingo | Indian Territory | 25 | | 99 | Mitchell | | | | | Alexandria | South Dakota | 25 | | 100 | Alexanuna | South Dakota | 25 | ^{*} Order by number. † Payment must be made by money order or in cash. ‡ These folios are out of stock. Circulars showing the location of the area covered by any of the above folios, as well as information concerning topographic maps and other publications of the Geological Survey, may be had on application to the Director. United States Geological Survey. Washington, D. C.